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Abstract— In this paper, we present a global robust adaptive
regulation control method to solve the attitude tracking and
disturbance rejection problem of spacecraft for a class of
persistent disturbances with unbounded energy which include
the sinusoidal disturbance as a special case. The approach
involves the integration of techniques from robust control,
adaptive control, and robust output regulation theory.

I. INTRODUCTION

Attitude control of spacecraft systems has been a bench-

mark control problem and has been extensively studied under

various assumptions and scenarios [1], [3], [7], [9], [10],

[12], [13]. An important control method for disturbance

attenuation of spacecraft systems is the H∞ control method.

Most H∞ based methods can only attenuate the effect of

disturbance on the output, quantified by L2 gain, to some

degree. An exception was given recently in [9] where the

authors employed the so-called inverse optimal adaptive

control method to achieve global attitude tracking. A distinct

feature of their approach as opposed to others is that their

control law allows the L2 gain of the closed-loop system to

be chosen arbitrarily small so as to achieve any level of L2

disturbance attenuation. Moreover, for the special class of

disturbances with bounded energy, the control law given in

[9] can further lead to asymptotic disturbance rejection, that

is, the steady-state attitude tracking can be exactly achieved

in the presence of disturbances. It should be noted that the

inverse optimal adaptive control method was first developed

in [8] without considering the external disturbances and plant

uncertainties.

Nevertheless, in more practical situations, the external

disturbances are not supposed to be energy bounded. For

example, the sinusoidal function is not energy bounded.

Therefore, an interesting problem is to design an attitude

control law that can achieve global attitude tracking in

the presence of mass parameter uncertainties and external

disturbances with unbounded energy. The purpose of this

paper is to develop a methodology for synthesizing a robust

adaptive control law that achieves global attitude tracking for

a spacecraft subject to unknown mass parameters and a class
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of disturbances which is a finite sum of sinusoidal functions

with unknown amplitudes and phases.

Since the H∞ control method can only achieve distur-

bance attenuation for disturbances with unbounded energy,

the method in [7], [9], [10], [12] cannot be extended to

achieve disturbance rejection. Therefore, we need to develop

a new methodology to deal with the problem. First, the

attitude control and disturbance rejection problem of the

spacecraft will be formulated in Section II. The complete

motion equation will be called System A(equations (1) - (4)).

In order to convert the problem to a more tractable problem,

we need to perform two major transformations. First, we

make use of the results in [9], [14] to simplify our problem

into a regulation problem of a class of nonlinear systems

subject to linearly parameterized uncertain parameter and

external disturbances. This class of systems will be presented

in Section III and be called System B (equation (9)). Second,

to identify the unknown disturbance in System A, in Section

IV, we will make use of the robust output regulation theory as

developed in [2], [4], [5] to reproduce the unknown external

disturbance by a class of dynamic compensators known as

internal models. Again by making use of the robust output

regulation theory, we can introduce a set of coordinate and

input transformation to obtain a so-called augmented system

which will be called System C (equation (27) or (32)). Then

we further show that the adaptive regulation problem of

System C is solvable and its solution leads to that of the

attitude control and disturbance rejection problem of the

spacecraft system (System A). Finally, the paper is closed

with some conclusions in Section VI.

II. PLANT MODEL AND PROBLEM FORMULATION

In this section, we will first present the mathematical

model of a rigid spacecraft, which can be found in many

books, e.g., [3] and [11]. We will use the unit quaternion

to represent the attitude of the spacecraft which is free of

singularity. The quaternion is a vector defined by q :=
[q1, q2, q3, q4]

T where qv := [q1, q2, q3]
T is called the vector

part of q and q4 is the scalar part of q. The quaternion q has

the constraint qT

vqv +q2
4 = 1. In terms of the unit quaternion,

the attitude kinematics is given by

q̇v =
1

2
(q4I3 + q×v )Ω

q̇4 =
1

2
qT
v Ω (1)

where Ω ∈ R
3 is the angular velocity of the body frame

relative to a reference frame, × is an operator on the three di-
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mensional vector qv such that q×v :=





0 −q3 q2

q3 0 −q1

−q2 q1 0



 .

The dynamic equation of attitude motion is as follows:

JΩ̇ = −Ω×JΩ + u + d (2)

where J :=





J11 J12 J13

J12 J22 J23

J13 J23 J33



 ∈ R
3×3 is constant,

positive definite, overall inertia matrix of the integrated

satellite system, u ∈ R
3 is the control torque, and d ∈ R

3 is

the external disturbance. As in [9], we suppose the desired

attitude motion is

q̇dv =
1

2
(qd4I3 + q×dv)Ωd

q̇d4 = −1

2
qT

dvΩd (3)

where [qdv, qd4]
T with qdv := [qd1, qd2, qd3]

T is the unit

quaternion representing the target attitude and Ωd ∈ R
3 is

the target angular velocity.

The external disturbance considered in this paper is a

combination of a constant and some sinusoidal functions,

i.e., each component di(t), i = 1, 2, 3, of the disturbance

d(t), can be represented as follows:

di(t) = Ci0 + Σni

j=1Cij sin(ωij + Υij) (4)

where Cij and Υij are arbitrarily unknown amplitudes and

phases, and ωij are known frequencies.

Now it is ready to describe the control objective of the

paper as follows.

Attitude Tracking and Disturbance Rejection Prob-

lem (ATDRP): Given desired target angular velocity Ωd :
[0, ∞) → R

3 such that Ωd and Ω̇d are bounded over

[0, ∞) and the desired attitude motion described by (3),

design a state feedback control law, independent of the class

of disturbances d(t) generated by (4), such that, the state of

the closed-loop system composed of (1), (2) and the control

law is bounded, and

lim
t→∞

qerror(t) := lim
t→∞

[

qv(t) − qdv(t)
q4(t) − qd4(t)

]

= 0,

lim
t→∞

(Ω(t) − CΩd(t)) = 0. (5)

Remark 2.1: The attitude tracking and disturbance atten-

uation problem has been studied in [9] in the sense that a

controller is designed to achieve the following objective

lim
t→∞

sup
t≤τ

‖qerror(τ)‖ ≤ γ lim
t→∞

sup
t≤τ

‖d(τ)‖

with γ > 0 a prescribed number. However, if d(t) does

not decay to zero as t → ∞, then, the objective of the

asymptotic disturbance rejection (5) cannot be achieved.

In this paper, we aim at achieving attitude tracking and

disturbance rejection for the class of disturbances described

by (4).

III. PROBLEM CONVERSION

Having defined the problem, we will further show that, by

a series of transformations, the main problem can be con-

verted into a well formulated global regulation problem. For

this purpose, let us first define sd := col(qdv, qd4,Ωd, Ω̇d).
Using the following standard coordinate transformation as

introduced in [11],

ev = qd4qv − q×dvqv − q4qdv

e4 = qT

dvqv + q4qd4

ω = Ω − CΩd (6)

with C = (1 − 2eT

vev)I3 + 2eveT

v − 2e4e
×
v , we have

ėv =
1

2
(e4I3 + e×v )ω

ė4 = −1

2
eT
v ω

Jω̇ = −(ω + CΩd)
×J(ω + CΩd) + J(ω×CΩd − CΩ̇d)

+u + d. (7)

It can be verified that the error e := col(ev, e4) is constrained

by eT

vev + e2
4 = 1.

Remark 3.1: It has been proved in [14] that the objective

(5) can be achieved if there exists a control law for system

(7) such that limt→∞ ev(t) = 0 and limt→∞ ω(t) = 0. This

fact can be used to further simplify our problem. In fact, as

suggested in [9], the following coordinate transformation

ω = z − Kev (8)

gives

ėv =
1

2
(e4I3 + e×v )(z − Kev) (9a)

ė4 = −1

2
eT
v (z − Kev) (9b)

Jż = −(ω + CΩd)
×J(ω + CΩd) + J(ω×CΩd − CΩ̇d)

+ JK

[

1

2
(e4I3 + e×v )ω

]

+ u + d. (9c)

We now show that the kinematics subsystem, i.e., (9a) and

(9b) has some desirable stability property as follows.

Lemma 3.1: Consider the kinematics subsystem, i.e., (9a)

and (9b), where K is some symmetric positive definite

matrix. Then for any piecewise continuous time function z(t)
defined for t ≥ 0 satisfying limt→∞ z(t) = 0, and any initial

state e(0), the solution of the subsystem is bounded for all

t ≥ 0 and limt→∞ ev(t) = 0.

Proof: First note that since eT

vev+e2
4 = 1. ev and e4 are

always bounded. Define a set B(ǫ) = {x ∈ R
3 | ‖x‖ ≤ ǫ}.

We need to prove that for any ǫ > 0, there exists a finite

time T ≥ 0 such that

ev(t) ∈ B(ǫ), ∀t ≥ T. (10)

Let kmin := λmin(K) be the smallest eigenvalue of K.

Since limt→∞ z(t) = 0, there exists a finite time T1 ≥ 0
such that

‖z(t)‖ ≤ 1

2
ǫkmin, ∀t ≥ T1.
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If there exist no finite time T2 ≥ T1 such that ev(T2) /∈
B(ǫ), then (10) holds with T = T1 and the proof is

completed. Thus, in what follows, we assume there exists

a finite time T2 ≥ T1 such that ev(T2) /∈ B(ǫ). We will

show this assumption leads to the following two claims:

(i) There exists a finite time T > T2 such that ev(T ) ∈
B(ǫ) and ev(t) /∈ B(ǫ),∀T2 ≤ t < T (that is, T is the

first time at which ev(t) enters B(ǫ));
(ii) ev(t) ∈ B(ǫ),∀t ≥ T .

Satisfaction of (10) clearly follows from these two claims.

Thus, we only need to prove these two claims.

Proof of Claim i:

We first prove that

‖ev(t)‖ ≥ ǫ =⇒ ė4(t) ≥
1

4
kminǫ2 > 0, ∀t ≥ T1. (11)

Indeed, we have

1

2
eT

vKev ≥ 1

2
kmin‖ev‖2 ≥ 1

2
kmin‖ev‖ǫ ≥ ‖ev‖‖z‖ ≥ eT

vz.

Using (9b), we have, ∀ t ≥ T1,

ė4 =
1

2
eT

vKev − 1

2
eT

vz

≥ 1

2
kmin‖ev‖ǫ −

1

4
kmin‖ev‖ǫ

=
1

4
kmin‖ev‖ǫ ≥

1

4
kminǫ2 > 0.

If (i) doesn’t hold, then for all t ≥ T2, ev(t) /∈ B(ǫ), that

is, ‖ev(t)‖ > ǫ. From (11), ė4(t) is positive for all t ≥ T2,

so there is a finite time T3 ≥ T2 such that

e4(T3) >
√

1 − ǫ2.

In fact, it suffices to choose T3 ≥ 4
√

1−ǫ2−e4(T2)
ǫ2kmin

+ T2. As

a result,

‖ev(T3)‖ =
√

1 − e2
4(T3) < ǫ,

i.e., ev(T3) ∈ B(ǫ). Now, the proof of claim (i) is completed.

Proof of Claim ii:

We first prove e4(T ) > 0 as follows:

On one hand, in (i) we know that for T2 ≤ t < T , ev(t) /∈
B(ǫ), hence ė4(t) > 0. It implies that e4(t) is increasing

during T2 ≤ t < T . Thus e4(T ) > e4(T2).
On the other hand, ev(T ) ∈ B(ǫ) gives ‖ev(T )‖ ≤ ǫ, and

ev(T2) /∈ B(ǫ) gives ‖ev(T2)‖ > ǫ. As a result, ‖ev(T )‖ <
‖ev(T2)‖, hence |e4(T )| > |e4(T2)|.

From e4(T ) > e4(T2) and |e4(T )| > |e4(T2)|, we have

e4(T ) > 0.

Suppose T4 ≥ T be the first time the trajectory of ev is

at the edge of B(ǫ), that is, ev(t) ∈ B(ǫ),∀T ≤ t ≤ T4.

As a result, during T ≤ t ≤ T4, we have ‖ev(t)‖ ≤ ǫ, and

|e4(t)| ≥
√

1 − ǫ2.

From e4(T ) > 0, the continuousness of e4(t) and

|e4(t)| ≥
√

1 − ǫ2, we have e4(t) > 0,∀T ≤ t ≤ T4.

At the edge of B(ǫ), we have ‖ev(T4)‖ = ǫ. By (11), we

have ė4(T4) > 0.

Thus, we have e4(T4) > 0 and ė4(T4) > 0, which imply

that, at the edge of B(ǫ), the time derivative of |e4(t)| is

positive, hence, the time derivative of ‖ev(t)‖ is negative.

As a result, the trajectories ev(t) cannot cross the edge of

B(ǫ) from inside to outside. Claim (ii) is thus proved.

By this lemma and Remark 3.1, we immediately obtain

the following result.

Theorem 3.1: Suppose there exists a dynamic state feed-

back control law of the form

u = ku(e, z, sd, Θ)

Θ̇ = ϕ(e, z, sd,Θ), (12)

where both ku(·, ·, ·, ·) and ϕ(·, ·, ·, ·) are globally defined

smooth functions, such that, for any initial condition, the

solution of the closed-loop system composed of (9) and (12)

is bounded and

lim
t→∞

z(t) = 0.

Then, for any initial conditions, the states of the closed-loop

system composed of (7) and (12) are bounded and

lim
t→∞

ev(t) = 0 and lim
t→∞

ω(t) = 0.

Hence, the attitude tracking and disturbance rejection prob-

lem is solved by the controller (12) under the coordinate

transformation (6) and (8).

By this theorem, we have simplified the ATDRP described

in Section II to the global stabilization problem of the

dynamic subsystem (9).

IV. PRELIMINARY MANIPULATION ON DYNAMICS

SUBSYSTEM

System (9) contains two types of uncertainties, namely, the

parameter uncertainty of the elements of the matrix J , and

the unknown disturbance d(t). Without d(t), the stabilization

of (9) can be achieved by the standard adaptive control

approach. On the other hand, without the uncertainty J , the

stabilization of (9) can be achieved by the internal model

based approach. However, with the presence of both types of

uncertainties, neither the adaptive control approach nor the

internal model based approach works alone. To overcome

this difficulty, we will tackle our problem in two steps. In

this section, we introduce a dynamic compensator that can

asymptotically estimate the unknown disturbance in some

sense. This dynamic compensator is motivated from the

robust output regulation theory. The dynamic compensator

together with system (9) is called the augmented system

which is in the form of (27). In next section, we will develop

an adaptive controller to stabilize the augmented system (27),

thus leading to the solution of our problem.

Let us first put system (9) in a more standard form. As

suggested in [9], for any vector a := [a1, a2, a3]
T ∈ R

3,

we have Ja = L(a)
[

J11 J22 J33 J23 J13 J12

]

T

where L(a) :=





a1 0 0 0 a3 a2

0 a2 0 a3 0 a1

0 0 a3 a2 a1 0



 . When

some entries of J are unknown, there exists an unknown

vector δ with dimension 0 ≤ nδ ≤ 6 such that
[

J11 J22 J33 J23 J13 J12

]

T

= L̄1δ + L̄0
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for some known matrices L̄1 ∈ R
6×nδ , L̄0 ∈ R

6×1. Let

L1(a) = L(a)L̄1 and L0(a) = L(a)L̄0, we have Ja =
L1(a)δ + L0(a). Therefore, we have

−(ω + CΩd)
×J(ω + CΩd) + J(ω×CΩd − CΩ̇d)

= F1(e, z, sd)δ + F0(e, z, sd), (13)

and

JK

(

1

2
(e4I3 + e×v )ω

)

= G1(e, z)δ + G0(e, z), (14)

where

F1(e, z, sd) := −(ω + CΩd)
×L1(ω + CΩd)

+L1(ω
×CΩd − CΩ̇d)

F0(e, z, sd) := −(ω + CΩd)
×L0(ω + CΩd)

+L0(ω
×CΩd − CΩ̇d)

G1(e, z) :=
1

2
L1

(

K(e4I3 + e×v )ω
)

G0(e, z) :=
1

2
L0

(

K(e4I3 + e×v )ω
)

. (15)

It is noted that in general F1(e, 0, sd) 6= 0, F0(e, 0, sd) 6= 0,

G1(e, 0) 6= 0, and G0(e, 0) 6= 0.

As a result, the subsystem (9c) becomes

Jż = (F1(e, z, sd) + G1(e, z))δ + F0(e, z, sd)

+G0(e, z) + u + d. (16)

To simplify (16), applying the input transformation u = ū−
F0(e, z, sd) − G0(e, z) to (16) gives

Jż = (F1(e, z, sd) + G1(e, z))δ + ū + d. (17)

To handle the uncertain disturbance d(t), note that, for each

i = 1, 2, 3, there exist positive integers ri and real numbers

ai,1, · · · , ai,ri
such that

dridi(t)

dtri
− ai,1di(t) − ai,2

d di(t)

dt
− · · ·

−ai,ri

d(ri−1)di(t)

dt(ri−1)
= 0. (18)

Let Ti be any nonsingular matrix of dimension ri, and

θi(t) = Ti

[

di(t) ḋi(t) · · · d(ri−1)di(t)

dt(ri−1)

]

T

.(19)

Then, we have

θ̇i(t) = TiΦiT
−1
i θi(t), di(t) = ΨiT

−1
i θi (20)

where

Φi =















0 1 0 · · · 0
0 0 1 · · · 0
...

...
... · · ·

...

0 0 0 · · · 1
ai,1 ai,2 ai,3 · · · ai,ri















Ψi =
[

1 0 · · · 0
]

. (21)

Using (20), it is possible to overcome the uncertainty

caused by d(t) by introducing a dynamic compensator as

follows.

Let Mi ∈ R
ri×ri and Ni ∈ R

ri×1 be a pair of controllable

matrices with Mi Hurwitz. Then, there exists a nonsingular

matrix Ti satisfying the Sylvester equation

TiΦi − MiTi = NiΨi (22)

since the pair (Φi, Ψi) is observable. Let

θ := col(θ1, θ2, θ3)

M := block diag(M1,M2,M3)

N := block diag(N1, N2, N3).

Then we can define a dynamic compensator as follows:

η̇ = Mη + Nū − P0(z) (23)

where P0(z) with P0(0) = 0 is some sufficiently smooth

function to be determined later.

Consider the augmented system composed of (17) and

(23). Under the following coordinate transformation,

η̄ = η − θ, ũ = ū − ΨT−1η (24)

we have

˙̄η = (M + NΨT−1)η̄ + Nũ − P0(z)

Jż = {F1(e, z, sd) + G1(e, z)} δ + ΨT−1η̄ + ũ.(25)

Remark 4.1: The compensator (23) is motivated from

the robust output regulation theory as can be found in

[5]. However, when δ 6= 0, the disturbance rejection of

system (17) cannot be viewed as a robust output regulation

problem for two reasons. First, sd is not generated by some

neutrally stable linear exosystem, and second, F1(e, 0, sd) 6=
0, F0(e, 0, sd) 6= 0. Thus (23) cannot be considered as an

internal model of system (17). As a result, the framework for

handling the robust output regulation problem established in

[5] cannot be directly used on system (17). Nevertheless, the

idea of the internal model design has still been utilized to

handle the unknown disturbance d(t).
In order to solve the attitude tracking and disturbance

rejection problem, it suffices to find a control law to regulate

the augmented system (25). For this purpose, let

P0(z) = MNL0(z). (26)

Then a further transformation η̃ = η̄ − NJz gives

˙̃η = Mη̃ + P1(e, z, sd)δ

Jż = (F1(e, z, sd) + G1(e, z))δ + ΨT−1η̃ + ΨT−1NJz

+ũ, (27)

with

P1(e, z, sd) := MNL1(z) − N [F1(e, z, sd) + G1(e, z)]. (28)

We have now completed the conversion of the attitude

tracking and disturbance rejection problem for the spacecraft

into the regulation problem for system (27). This result is

summarized as follows.

Lemma 4.1: If there exists a control law

ũ = kũ(e, z, sd, η, Θ2)

Θ̇2 = ϕ2(e, z, sd, η, Θ2) (29)
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such that the state of the system composed of (27) and (29

is bounded and limt→∞ z(t) = 0. Then the attitude tracking

and disturbance rejection problem is solved by a control law

of the form (12) where Θ := col(Θ1, Θ2), Θ1 = η and

ku(e, z, sd, Θ) = kũ(e, z, sd, η, Θ2)+F0(e, z, sd)+G0(e, z).

V. MAIN RESULT

So far we have converted the attitude tracking and distur-

bance rejection problem to a problem of designing a control

law (29) such that the state of the system composed of (27)

and (29) is bounded and limt→∞ z(t) = 0. This can be

considered as a regulation problem. Since δ is uncertain,

we will use an adaptive scheme to deal with it. First we will

perform a linear parameterization Jz = L1(z)δ+L0(z), and

utilize a feedforward control

ũ = û − ΨT−1NL0(z). (30)

Then, system (27) becomes

˙̃η = Mη̃ + P1(e, z, sd)δ

Jż = [F1(e, z, sd) + G1(e, z) + ΨT−1NL1(z)]δ

+ΨT−1η̃ + û. (31)

Using a more compact notation x1 = η̃, x2 = z, u = û,

µ = δ, w(t) = col(e(t), sd(t)) and

ym = col(x2, e, sd)

A = ΨT−1

f(ym) = P1(e, z, sd)

g(ym) = F1(e, z, sd) + G1(e, z) + ΨT−1NL1(z),

we can put system (31) in the following form:

ẋ1 = Mx1 + f(ym)µ

Jẋ2 = Ax1 + g(ym)µ + u

y = x2 (32)

with x1 ∈ R
n1 , x2 ∈ R

n2 and µ ∈ R
nµ .

Now all we need to do is to solve the global regulation

problem of system (32) by measurement output (ym) feed-

back control, i.e., to find a control law which depends on ym

only such that, for any initial condition of the closed-loop

system, the state of the closed-loop system is bounded and

limt→∞ y(t) = 0.

The regulation problem of system (32) poses specific

difficulty because of the presence of f(ym)µ and g(ym)µ
which do not vanish even when x1 = 0, x2 = 0, u = 0. Thus

we need to develop a dynamic coordination transformation

technique to circumvent this difficulty. In fact, we have the

following result.

Proposition 5.1: Consider system (32) and assume that

e(t) and sd(t) are bounded piecewise continuous time func-

tions for t ≥ 0. Then, there exists a control law depending

on ym only such that, for any initial condition of the closed-

loop system, the state of the closed-loop system is bounded

and limt→∞ y(t) = 0.

Proof: Let ζ ∈ R
n1×nµ be produced by an auxiliary

system

ζ̇ = Mζ + f(ym). (33)

Let x̄1 = x1 − ζµ. Direct calculation shows that

˙̄x1 = Mx1 + f(ym)µ − [Mζ + f(ym)]µ = Mx̄1.

Jẋ2 = Ax̄1 + ρ(ym, ζ)µ + u (34)

where ρ(ym, ζ) := Aζ + g(ym).
It is noted that in system (34), the uncertainty term f(ym)µ

disappears while the newly introduced variable ζ is produced

by a known function f and matrix M . Therefore, system (33)

and (34) is in a standard form as studied , e.g., in [6], and the

regulation of this system can be handled as follows. Design

a control law

u = −ρ(ym, ζ)µ̂ − Kx2 (35)

where the vector µ̂ is used to estimate µ and K is any

symmetric positive definite matrix K (let Kmin > 0 be the

smallest eigenvalue). And design an update law

˙̂µ = ΛρT(ym, ζ)x2 (36)

where Λ is any diagonal matrix with positive diagonal entries

which is used to modify update rate.

Now, let Q be the symmetric positive definite matrix

satisfying QM + M TQ = −I and pick a real number

ǫ ≥ ‖A‖2/Kmin. By choosing

V (x̄1, x2, µ̃) = ǫx̄T

1Qx̄1 +
1

2
xT

2Jx2 +
1

2
µ̃TΛ−1µ̃

with µ̃ = µ̂ − µ, we have, along (33) and (34),

dV (x̄1, x2, µ̃)

dt
= −ǫ‖x̄1‖2 + xT

2Ax̄1 − xT

2Kx2

+µ̃T
[

−ρT(ym, ζ)x2 + Λ−1 ˙̃µ
]

≤ −ǫ‖x̄1‖2 +
1

2ǫ
‖xT

2A‖2 +
1

2
ǫ‖x̄1‖2 − xT

2Kx2

≤ −a(x̄1, x2)

with a(x̄1, x2) := 1
2ǫ‖x̄1‖2 + 1

2xT

2K(x2). Thus, the states

x̄1, x2 and µ̃ are bounded, so is the output ym. As a

result, the state ζ is bounded, and hence x1 is bounded.

Moreover, the function V (x̄1, x2, µ̃) is lower bounded, and

a(x̄1, x2) is uniformly continuous in t. By Barbalat’s lemma,

limt→∞ x2(t) = 0. The proof is thus completed.

Now applying Proposition 5.1 to system (31) and noting e
and sd are always bounded shows that the following control

law

û = −Kzz − ρ(ym, ζ)δ̂

ζ̇ = Mζ + P1(e, z, sd)
˙̂
δ = ΛρT(ym, ζ)z (37)

is such that the state of the closed-loop system composed

of (31) and (37) is bounded and limt→∞ z(t) = 0. Hence,

by Theorem 3.1 and Lemma 4.1, the attitude tracking and
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disturbance rejection problem formulated in this paper is

solved by a controller of the form (12), which consists of

(29) and (23). And (29) is in the form of (30) and (37) with

Θ2 = col(ζ, δ̂). Thus, we have reached our main result as

follows.

Theorem 5.1: The attitude tracking and disturbance re-

jection problem formulated in this paper is solvable.

Simulation is conducted for demonstrating the perfor-

mance of the control law designed above. The model of the

spacecraft is taken from [1] where the inertia matrix

J =





J11 1.2 0.9
1.2 17 1.4
0.9 1.4 15





which contains an unknown parameter δ = J11. We can cal-

culate F0(e, z, sd), F1(e, z, sd), G0(e, z), and G1(e, z) from

(15).

We consider the disturbance

d(t) =





d1(t)
d2(t)
d3(t)



 =





C1 sin(ω1 + Υ1)
C2 sin(ω2 + Υ2)
C2 sin(ω3 + Υ3)



 .

Suppose ω1 = 0.1, ω2 = 0.2 and ω3 = 0.2. It is easy to see

that Φi =

[

0 1
−ω2

i 0

]

, Ψi =
[

1 0
]

. Letting

Mi =

[

0 1
−3 −2

]

, Ni =

[

0
1

]

gives

T−1
i =

[

3 − ω2
i 2

−2ω2
i 3 − ω2

i

]

.

Hence, ΨiT
−1
i =

[

3 − ω2
i 2

]

. Now, we can obtain

P0(z) and P1(e, z, sd) from (26) and (28), respectively. In

particular, we note that P1(e, z, sd) ∈ R
6×1. Then, we can

take η ∈ R
6×1 and ζ ∈ R

6×1. Now, it is ready to give the

control law (29) given by (30) and (37), hence the overall

control law (12) consists of (23) and (29). In particular, we

choose the gains of the control law as K = 3I3, Kz = 20I3,

and the update rate matrix Λ = I3.

To demonstrate the effectiveness of the above control law,

we suppose the target angular velocity Ωd is

Ωd(t) =





0.05 sin(1πt/100)
0.05 sin(2πt/100)
0.05 sin(3πt/100)





and the initial target unit quaternion is qd(0) = [0, 0, 0, 1]T.
The initial attitude orientation of the spacecraft is q(0) =
[0.3,−0.2,−0.3, 0.8832]T, and the initial value of the angular

velocity is Ω(0) = [0, 0, 0]. The disturbance magnitudes are

C1 = 1, C2 = 2 and C3 = 6. The nominal value of parameter

J11 = 40. The initial state of the update law is δ̂(0) = 10,

and the initial values of the remaining states are chosen as

0. The simulation results for state q1 are shown in Fig 1.

Similar tracking performance for q2, q3 and q4 are achieved

as well.
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Fig. 1. Profile of states

VI. CONCLUSION

In this paper, we have presented a result on the attitude

tracking and disturbance rejection problem of the spacecraft

system subject to plant uncertainty. A specific contribution of

our approach is that our control law has achieved asymptotic

rejection of a class of external disturbances with unbounded

energy. Our approach has integrated techniques from robust

control, adaptive control, and output regulation theory.

REFERENCES

[1] J. Ahmed, V. T. Coppola, and D. Bernstein, “ Adaptive Asymptotic
Tracking of Spacecraft Attitude Motion with Inertia Matrix Identifi-
cation, ” Journal of Guidance, Control and Dynamics, vol. 21, pp.
684-691, 1998.

[2] C. I. Byrnes, F. Delli Priscoli, A. Isidori, and W. Kang, “Structurally
stable output regulation of nonlinear systems,” Automatica, vol. 33,
pp. 369-385, 1997.

[3] W. E. Dixon, A. Behal, D. M. Dawson, and S. P. Nagarkatti, Non-

linear Control of Engineering Systems: A Lyapunov-Based Approach,
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